skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bai, Yunhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A topological superconductor, characterized by either a chiral order parameter or a topological surface state in proximity to bulk superconductivity, is foundational to topological quantum computing. A key open challenge is whether electron-electron interactions can tune such topological superconducting phase. Here, we provide experimental signatures of a unique topological superconducting phase in competition with electronic correlations in 10-unit-cell thick FeTexSe1-x films grown on SrTiO3 substrates. When the Te content x exceeds 0.7, we observe a topological transition marked by the emergence of a superconducting surface state. Near the FeTe limit, the system undergoes another transition where the surface state disappears, and superconductivity is suppressed. Theory suggests that electron-electron interactions in the odd-parity xy- band drives this second topological transition. The flattening and eventual decoherence of dxy-derived bands track the superconducting dome, linking correlation effects directly to superconducting coherent transport. Our work establishes many-body electronic correlations as a sensitive knob for tuning topology and superconductivity, offering a pathway to engineer new topological phases in correlated materials. 
    more » « less